150 research outputs found

    Optimal Parameter Extraction Scheme of Current Sources and Bias Dependent Elements for HBT by searching the whole unknown Parameter Space

    Get PDF
    New analytical expressions for the dynamic resistance,transconductance,base-collector internal capacitance,and base-emitter internal capacitance are derived.And a new scheme,to extract the current source parameters,thermal parameter,and small signal parameters at multiple bias points on the normal active region,is developed.The proposed parameter extraction method is robust and very fast.Based on these equations, we propose a new scheme to find out the optimal solution by searching for a full-unknown parameter space.The search space corresponds to 1.17x10 8 points on the error surface, and it takes 12.6 hours to get an optimal model parameters using a 2GHz-desktop PC.This scheme is helpful for the modeling of HBT excluding the local minimum problem in the gradient optimization method and the inaccuracies in the direct extraction method

    An air-stable N-heterocyclic carbene iminoxyl borate radical zwitterion

    Get PDF
    A remarkably stable radical zwitterion derived from N-heterocyclic carbene nitric oxide and B(C6F5)(3) is reported. The presented radical was generated by steric and electronic protection of the nitric oxide moiety using B(C6F5)(3), which secured its stability toward air and moisture. An analogous yet less stable radical derived from C(C6H5)(3)(+) is also synthesized and characterized.111Ysciescopu

    The experiences of depressed pregnant women participating in a cognitive behavioral therapy program via video communication: an exploratory qualitative study

    Get PDF
    Purpose This study explored the experiences of pregnant women with depressed mood participating in a group cognitive behavioral therapy (CBT) program using video communication, based on Beck’s cognitive theory. Methods The participants were six pregnant women out of 13 women who had participated in an 8-session group CBT program using video communication for women with depressed mood (Edinburgh Postnatal Depression score of ≥9). Data were collected from February 20 through March 25, 2021. In-depth individual interviews were conducted through a video conferencing platform at 1 month post-baseline. Thematic analysis was done. Results Three themes, 10 subthemes, and 38 concepts were derived from experiences of participating in the 4-week group CBT program (twice a week). The first theme, entitled “continuing realization” had subthemes of “a negative and instable self,” “a selfish judgment that excludes others,” and “a strong belief in self-control.” The second theme, entitled “attempt to change for restoration” had subthemes of “shift to rational thinking,” “freedom from suppressed beliefs,” “tolerance of other people,” and “courage for self-expression.” The third theme, entitled “departure for a positive life,” had subthemes of “emotional healing,” “faith in oneself,” and “reestablishing the criteria for happiness.” Conclusion Pregnant women with depressed mood expressed that continuing realizations and attempts to change supported their transition toward a positive direction of healing. Thus, they were able to change their distorted thinking into rational thinking through CBT using video communication. These findings support the use of group CBT using video communication with pregnant women who have depressed mood

    Development of an approximate construction duration prediction model during the project planning phase for general office buildings

    Get PDF
    Accurate prediction of the construction duration is imperative to the reliable cash flow analysis during the project planning phase when feasibility analysis is carried out. However, lack of information and frequent changes that occur as a result of a negotiation process between the owner and the designer in defining the project scope make it difficult to compute real-time construction duration. Domestic and foreign models for calculating the construction durations cannot be readily applied to computation of construction duration for general office buildings in Korea specifically during the project planning phase as there is a limit in its applicability due to numerous restrictions. Moreover, there are no preceding studies suggesting different computational approaches to predict the entire construction duration for office buildings with the approximate construction duration concept during planning phase. Therefore, based on the collected performance data, this study proposes a multiple linear regression model that facilitates reliable prediction of approximate construction duration for office buildings in the project planning phase. The model will allow the owner and other stakeholders to predict the real-time construction duration using the basic information on office buildings and to assess the construction durations incorporating frequent changes during the project planning phase

    Brief psychological intervention for distress tolerance in an adult secondary care community mental health service:an evaluation

    Get PDF
    Distress intolerance has been suggested to be a maintaining factor in several mental health conditions. Distress tolerance skills training has been found to be beneficial in emotionally unstable personality disorder (EUPD) and post-traumatic stress disorder (PTSD). Short-term targeted interventions are increasingly being implemented in response to demand. This study investigates the efficacy of a distress tolerance brief psychological intervention (DT BPI) delivered by non-psychologists within an adult secondary care mental health service. Questionnaire data (pre and post) are reported from 43 participants who completed the intervention. Results suggest that the intervention was associated with significant improvements in distress tolerance, mood, anxiety and wellbeing. This indicates that a DT BPI can be effective when delivered by non-psychologists to real-world adult secondary care clients. The findings offer promising evidence that DT BPI could be a beneficial, cost-effective intervention and warrants further large-scale investigation. Key learning aims To enhance practitioners' awareness of distress intolerance as a potential maintaining factor and therefore treatment target. To outline a transdiagnostic distress tolerance brief psychological intervention. To illustrate the potential of this distress tolerance brief psychological intervention to produce positive reliable change with real-world clients when delivered by non-psychologists

    An explanatory randomised controlled trial of a nurse-led, consultation-based intervention to support patients with adherence to taking glucose lowering medication for type 2 diabetes.

    Get PDF
    BACKGROUND: Failure to take medication reduces the effectiveness of treatment leading to increased morbidity and mortality. We evaluated the efficacy of a consultation-based intervention to support objectively-assessed adherence to oral glucose lowering medication (OGLM) compared to usual care among people with type 2 diabetes. METHODS: This was a parallel group randomised trial in adult patients with type 2 diabetes and HbA1c ≥ 7.5% (58 mmol/mol), prescribed at least one OGLM. Participants were allocated to a clinic nurse delivered, innovative consultation-based intervention to strengthen patient motivation to take OGLM regularly and support medicine taking through action-plans, or to usual care. The primary outcome was the percentage of days on which the prescribed dose of medication was taken, measured objectively over 12 weeks with an electronic medication-monitoring device (TrackCap, Aardex, Switzerland). The primary analysis was intention-to-treat. RESULTS: 211 patients were randomised between July 1, 2006 and November 30, 2008 in 13 British general practices (primary care clinics). Primary outcome data were available for 194 participants (91.9%). Mean (sd) percentage of adherent days was 77.4% (26.3) in the intervention group and 69.0% (30.8) in standard care (mean difference between groups 8.4%, 95% confidence interval 0.2% to 16.7%, p = 0.044). There was no significant adverse impact on functional status or treatment satisfaction. CONCLUSIONS: This well-specified, theory based intervention delivered in a single session of 30 min in primary care increased objectively measured medication adherence, with no adverse effect on treatment satisfaction. These findings justify a definitive trial of this approach to improving medication adherence over a longer period of time, with clinical and cost-effectiveness outcomes to inform clinical practice.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments

    Get PDF
    For the development of new 5G systems to operate in bands up to 100 GHz, there is a need for accurate radio propagation models at these bands that currently are not addressed by existing channel models developed for bands below 6 GHz. This document presents a preliminary overview of 5G channel models for bands up to 100 GHz. These have been derived based on extensive measurement and ray tracing results across a multitude of frequencies from 6 GHz to 100 GHz, and this document describes an initial 3D channel model which includes: 1) typical deployment scenarios for urban microcells (UMi) and urban macrocells (UMa), and 2) a baseline model for incorporating path loss, shadow fading, line of sight probability, penetration and blockage models for the typical scenarios. Various processing methodologies such as clustering and antenna decoupling algorithms are also presented.Comment: To be published in 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC 2016-Spring), Nanjing, China, May 201

    NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals because it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy-six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submit- Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia; 23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovacˇ ic´ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany; 26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada; 27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739–8530 Japan; 28ImmunoGen, 830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College, ul. Michalowskiego 12, 31–126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore, Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363–883 Korea (South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363–700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon, Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth, New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5–1 Higashiyama, Myodaiji, Okazaki 444–8787 Japan; 46Graduate School of Pharmaceutical Sciences, Nagoya City University, 3–1 Tanabe-dori, Mizuhoku, Nagoya 467–8603 Japan; 47Medical & Biological Laboratories Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464–0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158–8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts 01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey 08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20–22 rue Henri et Gilberte Goudier 63200 RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Children’s GMP LLC, St. Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1–5 Muromati 1-Chome, Nishiku, Kobe, 651–2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry, Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California 94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District, Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave, Davis, California 95616; 70Horva´ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary; 72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg, Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tu¨ bingen, Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007 Author’s Choice—Final version open access under the terms of the Creative Commons CC-BY license. Received July 24, 2019, and in revised form, August 26, 2019 Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677 ER: NISTmAb Glycosylation Interlaboratory Study 12 Molecular & Cellular Proteomics 19.1 Downloaded from https://www.mcponline.org by guest on January 20, 2020 ted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide communityderived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods. Molecular & Cellular Proteomics 19: 11–30, 2020. DOI: 10.1074/mcp.RA119.001677.L
    corecore